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Immersed boundary-lattice Boltzmann simulations are used to examine the effects of
particle rotation, at low particle Reynolds numbers, on flows in ordered and random
arrays of mono-disperse spheres. The drag force, the Magnus lift force and the torque
on the spheres, are determined at solid volume fractions up to the close-packed limits
of the arrays. The rotational Reynolds number based on the angular velocity and the
diameter of the spheres is used to characterize the rotational movement of spheres.
The results show that the normalized Magnus lift force produced by particle rotation
is approximately in direct proportion to the rotational Reynolds number, while the
normalized drag force and torque acting on spheres are barely affected by this number.
The Magnus lift force is negligible relative to the magnitude of the drag force when
the rotational Reynolds number is low. However, it can be very significant, and even
larger than the drag force, as the rotational Reynolds number increases up to O(102),
especially for low solid volume fractions. Based on the simulation results, relations
for the Magnus lift force and the torque for both ordered arrays and random arrays
of rotating spheres at solid volume fractions from zero to close-packed limits are
formulated. Further, the drag force relations in the literature are revised based on
existing theories and the present simulation results for both arrays of spheres.

Key words: multiphase and particle-laden flows, particle/fluid flows

1. Introduction

It is known that a spinning object moving in a viscous fluid experiences a force
orthogonal to the plane spanned by the direction of the object’s translational motion
and its spin axis. This force accounts for the curved trajectory of spinning balls in
sports such as soccer, tennis and golf. This transverse force, now usually termed the
Magnus lift force, was first experimentally observed on spinning spheres by Robins
in 1742 and then on rotating cylinders by Magnus in 1853 (Barkla & Auchterlonie
1971). The explanation for this phenomenon was not given until the introduction of
boundary-layer theory by Prandtl in 1904 (see Anderson 2005). Considering the object
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to be a sphere, the particle Reynolds number (usually referred to as Reynolds number
for conciseness) used to characterize the flow dynamics is usually defined as

Re= ρ |U| d/µ (1.1)

where U is the steady-state superficial fluid velocity, defined as the fluid velocity
averaged over the total volume of the system, d is the diameter of the sphere, and
ρ and µ are the density and the dynamic viscosity of the fluid, respectively. The
Reynolds numbers at which the aforementioned phenomena occur are usually very
large. This paper will focus on computing the Magnus lift force for small values of
the Reynolds number and hence the primary cause of the lift force for large Reynolds
numbers, flow separation, is no longer involved in the flow dynamics. In the range of
low Reynolds numbers, the Magnus effect is a particular manifestation of Bernoulli’s
theorem and the lift force is mainly generated by the pressure differences on opposite
sides of the spinning object.

Rubinow & Keller (1961) theoretically calculated the lift force caused by particle
rotation at low Reynolds numbers. The lift force can be expressed as

FL =−πd3ρω×U/8, (1.2)

where ω is the angular velocity of the sphere. Dividing the lift force by the Stokes
drag

FDS = 3πdµU, (1.3)

we have the magnitude of the normalized lift force as follows:

FL = Rer sin(θ)/24, (1.4)

where
Rer = ρ|ω|d2/µ (1.5)

is termed the rotational Reynolds number for characterizing the rotational movement
of spheres, and θ is the angle between vectors ω and U. It can be seen in (1.4) that
the lift force is in direct proportion to Rer at small Reynolds numbers.

Later, Saffman (1965) obtained an analytical solution of the lift force acting on
a rotating sphere in a linear unbounded shear flow by using matched asymptotic
expansions. His expression for the lift force can be given by (Kurose & Komori
1999)

FL = 6.46νρa2Uc(|αs|/ν)1/2 − 11ρUcαsa3/8+πρUcωa3, (1.6)

where Uc is the fluid velocity on the streamline through the centre of the sphere,
a is the radius of the sphere, αs is the fluid shear rate of the mean flow, and ν
is the kinematic viscosity of the fluid. The first two terms on the right-hand side
are due to the fluid shear, while the third term represents the Magnus lift force.
Saffman commented that unless the rotation speed is significantly greater than the
shear rate, and for a freely rotating particle ω = αs/2, the lift force due to particle
rotation is an order of magnitude lower than that due to the shear when the Reynolds
number is small. Recently, through direct numerical simulations (DNS), Bagchi &
Balachandar (2002) found that, even in finite-Reynolds-number regimes, the lift due
to free particle rotation (induced by flow shear) is less significant than shear-induced
lift on the particle.

The coupling between the Reynolds number Re and the dimensionless shear rate
α∗s (α

∗
s =αsa/Uc) was numerically investigated by Dandy & Dwyer (1990). The results
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show that the ratio between the lift force and the drag force is less than 0.07 over
all simulated Re (0.1 6 Re 6 100) when a relatively large α∗s is used (α∗s = 0.1).
Therefore, only the drag force and particle gravity are considered to be responsible
for the dynamics of fluid–particle flows in simulations of many industrially important
reactor systems (Zou, Guo & Chan 2008; Xu et al. 2012). The Magnus lift force,
believed to be even less important than the lift force due to flow shear (the Saffman
force), is usually neglected.

Though the free particle rotation only causes very insignificant Magnus lift force,
this may not be how the particles behave in realistic gas–solids systems. Many
investigators (e.g. Bagnold 1973; White & Schulz 1977) have shown the importance
of lifting forces in saltation trajectories of sand grains. Through high-speed motion
pictures (2000 f.p.s.), White & Schulz (1977) reported that the saltating spherical
glass microbeads were spinning at a rate of several hundred revolutions per second.
They pointed out that the high spinning rates are generally obtained by collisions
with the sand surface. They also found that including the Magnus lift force can
increase the height of sand motion by 50 %, resulting in remarkable agreement
between numerical trajectory solutions and the filmed trajectories. These observations
and calculations were confirmed by another set of experiments performed by White
(1982). Many developments have been made based on White & Schulz’s work (e.g.
Zou et al. 2007; Kang & Zou 2011). It is worth mentioning that Zou et al. (2007)
reported that in terms of the height and the horizontal distance increases, the Magnus
force contributes several times more than the Saffman force does.

With the use of high-speed imaging cameras, investigators found that the majority
of particles are rotating at high speeds in circulating fluidized bed (CFB) risers (Wu
et al. 2008; Shaffer, Shadle & Breault 2009). Experiments show that the high rotating
rates are caused by strong frictional collisions, including both inter-particle collisions
and particle–wall collisions. Wu et al. (2008) reported that the mean and maximum
rotating rates of particles with a diameter of 0.5 mm were around 300 rev s−1

and 2000 rev s−1, respectively. Considering that the kinematic viscosity of air is
around 1.5 × 10−5 m2 s−1, the rotational Reynolds numbers corresponding to these
rotating rates are 30 and 210 respectively. The data from Shaffer et al. (2009) yield
even larger values of rotational Reynolds number, which are around 90 and 350,
respectively. It needs to be mentioned that the rotational Reynolds number due to
free particle rotation is usually much less than unity. It is also helpful to use the
dimensionless angular speed Γ (Γ = ωa/Uc) to characterize the relative importance
of the rotational movement (e.g. Tsuji, Morikawa & Mizuno 1985; Kurose & Komori
1999). Here, an equivalent definition of Γ would be Γ = 0.5 Rer/Re when the angular
velocity is perpendicular to the mean flow. In typical CFB risers, while Rer has a
magnitude of O(102), as mentioned above Re is usually between O(10) and O(102).
This makes Γ in the range of O(1) and O(10). For individual particles, Γ may range
from zero to O(103) since, at some instant, individual particles can be completely
non-rotational or rotating fast with an almost vanishing Re. To explore the effects of
particle rotation in a wide range of Γ , in this work simulations are performed at a
small Re of around 0.2 with Rer changing from practically zero to O(102).

In computational fluid dynamics (CFD), researchers (e.g. Goldschmidt 2001; Sun
& Battaglia 2006) have realized that the absence of particle rotation and subsequent
energy losses is a deficiency of the multi-fluid model, in contrast to the discrete
particle model (DPM), which incorporates physics at the particle level, such as
collisions and particle rotation, and simulates particle behaviour that is closer to
experimentally observed conditions. After formulating a particle rotation model to
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account for the energy dissipation due to particle rotation, Sun & Battaglia (2006)
and Wang et al. (2012) found that the bubble dynamics and time-averaged bed
behaviour were better captured in gas-fluidized beds using the multi-fluid models.
The CFD-DPM, also known as CFD-DEM (CFD-discrete element model), was first
proposed by Tsuji et al. (1987), Tsuji, Tanaka & Ishida (1992), Tsuji, Kawaguchi
& Tanaka (1993) and rationalized by Xu & Yu (1997, 1998). This approach gives
realistic pictures of particle motion by applying Newton’s laws of motion to individual
particles. The dynamics of continuum fluid is solved using traditional CFD based on
the local averaged Navier–Stokes equations. By this approach, many fluid–particle
interaction forces with different physical origins, including the Magnus force, can be
implemented in a rather straightforward way (Zhu et al. 2007). Using the CFD-DPM
with a simple particle–wall collision model, Tsuji et al. (1987) investigated the motion
of particles and fluid in a horizontal channel. They found that some particles were
lifted to a higher position by the Magnus force and thus the particles were dispersed
widely in the pipe cross-section. By employing a sticking–sliding collision model
to solve the particle–particle collisions and the particle–wall collisions, Lun & Liu
(1997) also found that the Magnus force played a significant role in suspending the
solid phase in a horizontal channel. They also reported that Rer of particles ranged
from approximately 120 to 1360 for all the simulated cases, which are much greater
than the measurements conducted by Wu et al. (2008) and Shaffer et al. (2009).
Schellander, Schneiderbauer & Pirker (2013) developed a new numerical model based
on Eulerian–Lagrangian discrete phase approaches and found that the results were
significantly improved in terms of the average particle velocity and solid volume
fraction. They attributed this improvement to the inclusion of the Magnus force.

To the best of the authors’ knowledge, the solution of Rubinow & Keller (1961)
is the only available theory for the Magnus force. Unfortunately, their theory is
only valid at the zero-solid-volume-fraction limit in the low-Reynolds-number regime.
Some researchers (e.g. White & Schulz 1977; Zou et al. 2007; Kang & Zou 2011)
directly used Rubinow & Keller’s solution at all conditions, based on the belief
that the Magnus force should be around the same order of magnitude, while other
researchers (e.g. Barkla & Auchterlonie 1971; Tsuji et al. 1985; Lun & Liu 1997;
Oesterle & Dinh 1998; Loth 2008) invested much effort in developing empirical
models of the Magnus force based on experimental measurements. Tsuji et al. (1985)
clearly stated that the Magnus force is proportional to the dimensionless angular
speed Γ when Re is in the range from 550 to 1600, indicating that the Magnus force
may become very significant when Γ is quite large. Later, Oesterle & Dinh (1998)
reported that the proportionality tends to decrease with increasing Γ in the range
10< Re< 140. For reviews on empirical models, the reader can refer to Loth (2008)
and Crowe et al. (2012).

Moreover, DNS of a spinning sphere have been performed to calculate the Magnus
force in different Reynolds number regimes (e.g. Kurose & Komori 1999; Zhou &
Fan 2014). Kurose & Komori’s results showed that, at Re = 500, the Magnus force
is around 50 % of the drag force when a sphere spins at a large Rer of 250 (note,
in their paper, this spinning rate is represented by Γ with a value of 0.25). The
recent simulations by Zhou & Fan (2014) show that, in the low-Reynolds-number
flow regime, the Magnus force reaches around 16 % and 65 % of the drag force when
a sphere spins at Rer of 10 and 50, respectively. It should be mentioned that the
above investigations, including experimental measurements and numerical simulations,
solely pay attention to the Magnus force at the zero limit of solid volume fractions,
even though the Reynolds number regime varies. Nevertheless, these investigations,
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especially the two DNS studies, have demonstrated that the Magnus force could be
significant when particles spin at high speeds. It is therefore very important to conduct
more comprehensive computations to evaluate the Magnus force experienced by the
rotating particles in particle-laden flows. With regard to the torque acting on rotating
spheres, Takagi (1977) and Dennis, Singh & Ingham (1980) have analytically obtained
the solution for a rotating sphere in a fluid at rest. However, their theories only gave
the result of the torque at practically zero solid volume fraction and the Magnus force
was not calculated due to the essentially zero Reynolds number of the flow.

The drag force in the low-Reynolds-number regime has been obtained analytically
at various solid volume fractions in both ordered arrays of spheres (Hasimoto 1959;
Sangani & Acrivos 1982; Zick & Homsy 1982) and random arrays of spheres (Kim &
Russel 1985; Ladd 1990). In these analytical studies, particle rotation is not allowed,
and hence, the solutions of the Magnus force and the torque are not pursued.

As mentioned above, the problem of flow through rotating particles is important
in many processes involving particle transport and fluidization. In spite of its wide
importance, solutions of the Magnus lift force due to particle rotation are generally
limited to conditions of practically zero solid volume fractions. The aim of this work
is to obtain accurate results that quantify the Magnus force at various solid volume
fractions from practically zero to the close-packed limit by using surface-resolved
DNS since obtaining the solution using analytical approaches is difficult, if not
impossible. The simulations are performed in both ordered arrays and random arrays
of spheres. As a starting point, the flow simulated in this work is limited to the
low-Reynolds-number regime. Simulations of flows beyond this regime can be done
in a similar manner and are left for future work.

2. Numerical methods
The most recently developed immersed boundary–lattice Boltzmann method

(IB-LBM) with second-order accuracy is adopted in this work. Several versions
of the numerical method with different time schemes are provided in Zhou & Fan
(2014). The version with the fourth-order Runge–Kutta scheme is used in this paper.

The mono-disperse arrays of spheres considered in this work have a solid volume
fraction

c= n(4/3)π(a/L)3, (2.1)

where a is the sphere radius, and n is the number of spheres enclosed in a typically
cubic computational domain whose volume is L3. For each simulation case, a is
obtained through (2.1) after the specification of c, n and L. In this work, random
arrays and the three most common types of ordered arrays are simulated, which
are simple cubic (SC), body-centred cubic (BCC) and face-centred cubic (FCC)
arrays. For SC, BCC and FCC arrays of spheres, n simply equals 1, 2 and 4,
respectively. For random arrays of spheres, n should be large enough to avoid
periodic artifacts. In this paper, n is chosen to be 144. It is important to examine
the autocorrelation of the fluid velocity to ensure that the computational domain
is sufficient to produce accurate results (Tenneti, Garg & Subramaniam 2011). The
streamwise (x direction) autocorrelation and the vertical (y direction) autocorrelation
of the streamwise velocity are depicted in figures 1(a) and 1(b), respectively. It can
be seen that all the autocorrelations decay quickly to near zero values except the
streamwise autocorrelation for c = 0.1. This indicates that for small solid volume
fractions, more particles and larger computational domains may be required for
reduced-period artifacts. However, Tenneti et al. (2011) have demonstrated that even
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FIGURE 1. The autocorrelation functions of the streamwise velocity obtained from the
present simulations of steady Stokes flow past a random configuration of spheres at
different solid volume fractions. The grid resolution of the simulations is L = 192;
r denotes the distance between two points in a specific direction; rx and ry denote
the autocorrelations calculated in the streamwise and vertical directions, respectively.
(a) The streamwise autocorrelation of the streamwise velocity, Ru(rx); (b) the vertical
autocorrelation of the streamwise velocity, Ru(ry).

simulations with 80 particles could produce satisfactory results for c= 0.1. Therefore,
in this work, no attempt has been made to simulate more particles for c= 0.1. The
spanwise (z direction) autocorrelation of the streamwise velocity behaves similarly to
the vertical one and thus is omitted here.

In order to reduce statistical uncertainty, several random sphere configurations
should be simulated for each solid volume fraction. For each configuration, flows
in three different directions are simulated to obtain more independent results for
ensemble averaging. In this work, the configuration number for each solid volume
fraction is usually two or larger, i.e. at least six independent results are obtained for
each solid volume fraction of the random-array simulations. Representing the number
of independent results by ni, the standard deviation of a quantity φ is calculated from
1φ=√〈(φ − 〈φ〉)2〉/(ni − 1), where 〈φ〉 is obtained through 〈φ〉 =∑ni

j=1 φj/ni. In the
final average, we intended to omit all values that are outside 2.5 times the standard
deviation, as calculated from the initial average. However, no values have been
disregarded since all the results are found to be within 2.5 times the standard
deviation of the mean. This is attributed to the sophisticated random configuration
procedure used in this paper, which is a combination of the standard Monte Carlo
procedure (Metropolis et al. 1953) and the method of Zinchenko (1994). For details
of this procedure, the reader is referred to Hill, Koch & Ladd (2001a,b).

The simulations are initiated with a flow field at rest. A constant pressure gradient
∇pe = bpcρν

2/d3 is imposed to drive the flow through fixed assemblies of spheres,
where b is a unit vector representing the direction of the pressure gradient and pc is
used to adjust the magnitude of the constant pressure gradient. In this work, pc is
chosen such that Re of the flow is around or smaller than 0.2. It is found that flows
with even smaller Re produce indistinguishable forces on spheres, which is consistent
with the findings in Van der Hoef, Beetstra & Kuipers (2005).

To obtain the result for each case, a set of simulations with different grid resolutions
is executed. Typically, the grid resolutions used here are L/h = 48, 72 and 108 for
ordered arrays and L/h = 108, 144 and 192 for random arrays, where L and h are
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the size of the computational cube and the lattice spacing, respectively. The retraction
distance of rd = 0.3h is fixed in all the simulations. The final drag force, Magnus lift
force and torque for each case are obtained from Richardson extrapolation using the
values from the three consecutive meshes (Breugem 2012; Zhou & Fan 2014). The
fluid viscosities adopted in the simulations are computed from ν= 1.65CFL/12 (Zhou
& Fan 2014), where CFL denotes the Courant–Friedrichs–Lewy number. To control
the compressibility errors of the LB equation while maintaining the computation
stable, CFL is set to 0.8 for solid volume fractions less than 0.3. It is found that
compressibility errors grow monotonically with increasing solid volume fraction.
Given that compressibility errors can be kept small by either decreasing the fluid
viscosity or increasing the ratio of the sphere diameter to the lattice spacing, in
this work, CFL is gradually reduced as the solid volume fraction increases to avoid
excessively large computational domains. For instance, for random arrays of spheres,
the CFL numbers for solid volume fractions c = 0.4, 0.5, 0.6 and 0.63 are chosen
as 0.4, 0.2, 0.15 and 0.1, respectively. To ensure that the compressible errors are
negligible, both the maximum magnitude of the divergence of the velocity field ∇ · u
and that of the density fluctuations δρ are recorded during the simulations. It is found
that |∇ · u|max and |δρ|max are usually around 1 × 10−5 and 1 × 10−4 on the finest
meshes, respectively, indicating that compressible effects in the simulations can be
safely ignored.

2.1. Calculation of the drag force, the Magnus lift force and the torque acting on
spheres

The overall force F̃ exerted on a sphere is computed after the flow reaches steady
state. In this work, the buoyancy-type force due to the pressure gradient is usually
excluded from F̃. Therefore, F̃ in stage q of a time step can be calculated as

F̃
q =−

∑
l

F̃
q,Ns

l 1Vl + d
dt

(∫
Vp

ρudV

)
+ Vp∇pe, (2.2)

where Vp is the sphere volume, u is the velocity vector of the flow, 1Vl is the volume
for the lth Lagrangian marker, F̃

q,Ns

l is the force experienced by the lth Lagrangian
marker, and Ns represents the total number of force iterations in the multi-direct
forcing method. The final value of F̃ is obtained from the following expression:

F̃=
i∑

k=1

βik F̃
k
, (2.3)

where βik denotes the coefficients of the Runge–Kutta scheme. Here, i= 4 since the
four-stage fourth-order Runge–Kutta scheme is used.

It is appropriate to normalize overall force F̃ with the magnitude of the Stokes drag
FDS. Thus, we have

F= F̃/|FDS| = F̃/3πdµ |U|, (2.4)

where F is used to represent the normalized overall force hereinafter. Also, in the
remainder of this paper, all the forces referred to are normalized in the same manner
and the word ‘normalized’ is usually omitted for conciseness.
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By definition, the drag force FD is the force experienced by a sphere in the
direction of the flow velocity U. Denoting the unit vector in the direction of U as

nD =U/
√

U ·U, (2.5)

the drag force can be calculated from

FD = FDnD = (F · nD)nD. (2.6)

The lift force due to particle rotation will be in the direction of −ω × U. Similarly,
the unit vector for −ω×U is defined as

nL =−ω×U/
√
(ω×U) · (ω×U). (2.7)

Then, the lift force can be calculated from

FLθ = FLθnL = (F · nL)nL, (2.8)

where θ is the angle between ω and U and can be obtained by

θ = arcsin[|ω×U|/(|ω| |U|)]. (2.9)

The lift force FLθ is denoted as FL only when ω and U are perpendicular to each
other, i.e. θ =π/2. The relation between FLθ and FL can be expressed as

FLθ = FL sin(θ). (2.10)

Theoretically, this relation is valid only when both Re and Rer are small. However,
this work will show that this relation is approximately correct in a wide range of Rer

when Re is small.
In three-dimensional space, the cross-product of two orthogonal unit vectors yields

the third unit vector
nR = nD × nL. (2.11)

The force along the third unit vector, referred to as the residual force, is calculated
from

FR = FRnR = (F · nR)nR. (2.12)

In the low-Reynolds-number regime, the force FR vanishes in an ordered-array
simulation due to the linearity of the Stokes equations and symmetry considerations.
However, in a random-array simulation, FR may be non-zero due to the fact that
a perfectly isotropic random configuration is difficult to achieve. Generally, an
anisotropic configuration may direct the flow away from the direction of the imposed
pressure gradient, making F deviate from U even when particle rotation is not present.
This phenomenon has been reported by previous studies (e.g. Kriebitzsch, Van der
Hoef & Kuipers 2013; Zhou et al. 2014). However, the underlying reason behind it
has not been elaborated. Essentially, a phenomenon of this kind is quite common in
practice. An extreme but simple example of an anisotropic configuration resembles
the shape of an aerofoil, which can be formed by stacking a number of spheres in
an organized way. When the fluid flows around an aerofoil, it certainly experiences,
other than the drag force, a force in a lateral direction, the so-called aerodynamic
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lift force. The difference is that, in the area of aerodynamics, the generation of the
lateral force is not solely due to the anisotropic shape of the aerofoil but also to the
boundary layer theory at high Reynolds numbers. Here, we will refer to the force
caused by the anisotropy of configurations simply as the ‘configuration force’ and
represent it by FC. The direction of the configuration force can be quite arbitrary,
depending on the specific positioning of the spheres in arrays. For a system without
particle rotation, FC can be estimated by

FC = F− FD. (2.13)

For a system with particle rotation, the entire FR and part of FL come from FC.
Certainly, FC also contributes to FD in systems with or without particle rotation. This
does not affect the accuracy of FD much since FC is usually around or less than
1 % of FD in magnitude. However, FC can be comparable to or even greater than the
actual lift force when the rotational Reynolds number is low. This influence on the lift
force cannot be appreciably reduced by averaging over limited samples (for details on
this issue, see discussions in § 3.2.2). Therefore, to accurately calculate the lift force,
a procedure to eliminate the configuration force must be formulated.

Theoretically, in low-Reynolds-number flows, other than the translational movement,
the rotational movement of the particles also contributes to the configuration force
in anisotropic random arrays. Thus, essentially, FC is comprised of FU

C and Fω
C,

which are the average configuration force caused by the translational and rotational
movements of the spheres, respectively. To evaluate the magnitude of Fω

C, the direct
approach is to simulate systems in which spheres rotate but do not translate, i.e. the
systems have a non-zero Rer but a literally zero Re. However, it is not possible to
make Re zero without prior knowledge of the force potentially caused by particle
rotation. With the linearity of the problem, the configuration force from particle
rotation can be easily calculated by conducting simulations with zero pressure
gradient. To this end, simulations with Rer = 0.1 are performed at conditions of
∇pe = 0 for various solid volume fractions. It is found that the fluid in steady state
still flows in a certain direction with a very small yet non-zero Reynolds number,
which is termed Re′ for later use. Since the fluid is flowing with constant velocity,
the total force on the fluid should be zero. This yields

−L3
∇pe − nFg→s = 0, (2.14)

where Fg→s is the total average force that the fluid exerts on each sphere (including
the buoyancy-type force if the pressure gradient is non-zero). From the analysis above,
it follows that

Fg→s = FD + FL + FU
C + Fω

C − Vp∇pe. (2.15)

It is known that FU
C is independent of particle rotation and is always minor compared

to FD. It is also known that for any Re, the magnitude of FL at Rer = 0.1 is always
around 10−3 times of that of FD, which is based on the simulation results performed
in this work as well as on the theoretical relation (1.4). Keeping these in mind and
also considering that ∇pe = 0, the combination of (2.14) and (2.15) gives

FD + Fω
C ≈ 0. (2.16)

Therefore, the magnitude of Fω
C can be estimated by that of FD, which can be easily

determined by Re′. Through simulations for various solid volume fractions, it is



www.manaraa.com

DNS of flow past arrays of rotating spheres 405

learned that the magnitude of Re′ is generally around O(10−6), which is approximately
10−5 times smaller than the Reynolds number used to generate the results in this
work, which is around 0.2. This makes the magnitude of Fω

C approximately 10−5

times smaller than that of FD obtained at Re ≈ 0.2 due to the linearity of this
problem. Also, as just mentioned, the magnitude of FL is only around 10−3 times
that of FD at a small Rer of 0.1. All this makes FL calculated at Rer = 0.1 and
Re ≈ 0.2 approximately 102 times larger than Fω

C. Moreover, both FL and Fω
C are

approximately in direct proportion to Rer, making Fω
C still negligible compared to

FL for various Rer up to O(102). Therefore, no efforts are made to eliminate Fω
C

in this work. These comparisons also indicate that to obtain accurate results for FL

and FD for random arrays, Rer and Re cannot be chosen arbitrarily small, though,
analytically, smaller Rer and Re yield better linearity of the problem. As far as FD

is concerned, Re may be lowered to around O(10−4) without significantly affecting
the results. However, for better accuracy of FL, Rer cannot be either too large or
too small. A large Rer will certainly incur the unwanted nonlinearity. Too small a
Rer will yield a small FL that can be easily contaminated by the configuration force
Fω

C. Based on the discussions above, the choice of Rer = 0.1 and Re≈ 0.2 is used to
produce the results in the present work for flows in the Stokes regime.

Other than the drag force and the Magnus lift force, the torque T̃ exerted by the
fluid on the rotating sphere is also computed in this work. T̃ in stage q of a time step
can be calculated as

T̃
q =−

∑
l

rq−1
l × F̃

q,Ns

l 1Vl + d
dt

(∫
Vp

r × (ρu)dV

)
, (2.17)

where r is the position vector relative to the sphere centroid. Similarly to the overall
force F̃, the final value of T̃ is obtained from the following expression:

T̃ =
i∑

k=1

βikT̃
k
. (2.18)

The torque T̃ due to particle rotation for zero solid volume fraction at low Reynolds
numbers has been analytically obtained by Kirchhoff (1876) and Rubinow & Keller
(1961) and given by

TRK =−πµd3ω. (2.19)

It is appropriate to normalize the torque T̃ with the magnitude of TRK . Hence, the
normalized torque T can be calculated as

T = TnT = T̃/πµd3 |ω|, (2.20)

where T represents the magnitude of the normalized torque T and nT is the unit
direction vector of T . In low-Reynolds-number flows, the present simulations show
that the direction of the torque T is indistinguishable from the opposite direction of
the angular velocity ω even when the rotational Reynolds number reaches O(102).
Therefore, nT can be simply defined by the following expression:

nT =−ω/
√

ω ·ω. (2.21)
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2.2. Procedure to eliminate the configuration force
As mentioned above, the flow is driven by a constant pressure gradient ∇pe, whose
direction can be prescribed at will. Due to the anisotropy of the generated random
arrays, the steady-state flow velocity U will not necessarily follow, but instead deviate
slightly from, the direction of −∇pe. This means that U and hence all the three unit
vectors, nD, nL and nR, cannot be determined until steady state of a simulation is
obtained. For a simulation with particle rotation in a random array, the force obtained
in the direction of nL contains both the Magnus lift force and the component of the
configuration force in that direction. To calculate and thus eliminate the unwanted
configuration force, typically a simulation without particle rotation but with flow in the
same direction as the one with particle rotation needs to be performed. Considering
that U and the three unit vectors may vary as the flow parameters such as Rer change,
it is very desirable to formulate a procedure that can reproduce the configuration force
in arbitrary directions. Thanks to the linearity of Stokes flows, this can be achieved
by simulating the flows without particle rotation through the random array in three
linearly independent, not necessarily orthogonal, directions. Denoting the three linearly
independent directions by nDN1, nDN2 and nDN3, an arbitrary direction nD in three-
dimensional space can be expressed through a linear combination as follows:

nD = αnDN1 + βnDN2 + γnDN3. (2.22)

The coefficients α, β and γ are solved using the iterative Gauss–Seidel method due
to its simplicity and efficiency. Considering the linearity of Stokes flows, the forces
exerted on spheres by the fluid flowing in the direction of nD can be expressed as

FN = αFN1 + βFN2 + γ FN3, (2.23)

where FN1, FN2 and FN3 are the overall force exerted on spheres when the flow is in
the direction of nDN1, nDN2 and nDN3, respectively. Here, the overall force FN is the
sum of the drag force and the configuration force. The actual Magnus force FLθ can
then be evaluated by eliminating the contribution from the configuration force in the
direction of nL, as shown in the expression

FLθ = [(F− FN) · nL]nL. (2.24)

Similarly, the influence of particle rotation on residual force can also be evaluated by

FRr = [(F− FN) · nR]nR. (2.25)

This force essentially is a projection of Fω
C on nR by virtue of the analysis in the

previous subsection.
To ensure that the unit vectors nDN1, nDN2 and nDN3 are linearly independent, the

pressure gradient used to drive the flow needs to be specified carefully. In this work,
the three directions of the pressure gradient for each random array are chosen as
follows:

bN1 = (−1, 0, 0), bN2 = (0,−1, 0), bN3 = (0, 0,−1). (2.26a−c)

Naturally, in isotropic arrays, the flow will follow the direction opposite to that of the
pressure gradient, resulting in

nDN1 = (1, 0, 0), nDN2 = (0, 1, 0), nDN3 = (0, 0, 1). (2.27a−c)
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However, due to the existence of anisotropy in the computer-generated random arrays,
the actual flow directions may slightly deviate from those shown in (2.27). The actual
unit vectors can be written as

nDN1 = (n11, n12, n13), nDN2 = (n21, n22, n23), nDN3 = (n31, n32, n33), (2.28a−c)

in which n11, n22, n33 are close to 1 and all other components are near zero, making
nDN1, nDN2 and nDN3 linearly independent. This also ensures that the coefficient matrix
of (2.22) is diagonally dominant, guaranteeing that the solution of α, β and γ can be
obtained.

The procedure to eliminate the configuration force from the Magnus lift force
may not be exactly valid when Rer is in the intermediate range. This is because the
linearity property of the flow may have broken down due to the strong disturbance
from the fast particle rotation. However, this will not cause a noticeable error in
our results since the lift force at relatively large Rer has significantly surpassed the
configuration force in magnitude. Thus, in the present work, the procedure formulated
above is applied to all simulations for random arrays. Moreover, it is found that the
effects of the configuration force on the torque are negligible.

For ordered arrays of spheres, no configuration force is involved in the simulations
due to the symmetric positioning of spheres. The drag force, Magnus lift force and
torque can be obtained directly through (2.6), (2.8) and (2.20). The residual force
FR used to indicate the magnitude of the configuration force always stays within the
machine round-off errors.

3. Results and analysis
3.1. Simulations for ordered arrays of spheres

First, Stokes flows in ordered arrays of spheres are examined without particle rotation.
The results for drag forces provide an excellent means of testing the accuracy of the
present numerical method over a wide range of solid volume fractions due to the
availability of existing theoretical and computational results in the literature. Then,
simulations with particle rotation are performed under various conditions.

3.1.1. The drag force
The drag force on spheres in SC arrays is shown in figure 2. It can be seen that

the results are in excellent agreement with the theory by Zick & Homsy (1982). The
differences between the present results and Zick & Homsy’s results are relatively
larger at high solid volume fractions, where their analytical computations suffer from
limited order approximations. Also shown in the figure are the computational results
from Hill et al. (2001a). Their results scatter around the results of Zick & Homsy,
which could be caused by the diameter corrections adopted in their simulations. The
analytical results by Hasimoto (1959) and Sangani & Acrivos (1982) for dilute cases
are also provided in figure 2.

Based on the present simulation results for high solid volume fractions and previous
theories for low solid volume fractions, a simple fit for the drag force in the entire
packing range is proposed as follows:

FD=
{
(1− c)(1− 1.7601c1/3 + c− 1.5593c2 + 3.9799c8/3 − 3.0734c10/3)−1 (c< 0.2),
2.812+ 2.621c+ 47.99c2 + 16.99c3 (0.2 6 c 6π/6),

(3.1)
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FIGURE 2. The Stokes-flow drag force on non-rotational spheres in SC arrays as a
function of the solid volume fraction. The simulation result of Hill et al. (2001a) and
the results from the theories of Hasimoto (1959) and Sangani & Acrivos (1982) are also
shown. The dashed line interpolates the discrete results of Zick & Homsy (1982). The
solid line represents the fit proposed in this work.

where the equation for c< 0.2 is from Sangani & Acrivos’s theory and π/6≈ 0.524
represents the theoretical packing limit of SC arrays of spheres.

The results for the drag force for BCC and FCC arrays are shown in figure 3, in
which it can be seen that the present results agree well with those obtained by Zick
& Homsy (1982). The expressions

FD =
{
(1− c)(1− 1.7918c1/3 + c− 0.3292c2)−1 (c< 0.1),
2.118+ 6.512c+ 76.22c2 − 163.0c3 + 281.5c4 (0.1 6 c 6

√
3π/8),

(3.2)

and

FD =
{
(1− c)(1− 1.7917c1/3 + c− 0.3020c2)−1 (c< 0.1),
exp(0.6767+ 5.796c− 3.959c2 + 4.664c3) (0.1 6 c 6

√
2π/6),

(3.3)

are proposed to fit the present numerical results for BCC and FCC arrays, respectively,
in which,

√
3π/8 and

√
2π/6 represent the theoretical packing limit of BCC and FCC

arrays, respectively. The theories of Hasimoto (1959) are used in both expressions for
higher accuracy in the low range of solid volume fractions (c< 0.1).

3.1.2. The Magnus lift force and the torque due to particle rotation
To calculate the Magnus lift force FL, the spheres in arrays are allowed to rotate

at various fixed rates from the low to the intermediate range. For each selected solid
volume fraction, usually six values of Rer are simulated. Specifically, they are 0.1, 1,
10, 50, 100 and 200. The rotation axis of the spheres is first set perpendicular to the
direction of the added pressure gradient, as shown in figure 4. The non-perpendicular
case is examined afterwards.

Figure 5 shows the drag force, Magnus lift force and torque acting on the sphere
in SC arrays as a function of Rer. It can be seen that in general, in the range of Rer

from practically zero up to O(102), the Magnus lift force linearly increases with Rer,
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FIGURE 3. As figure 2, but for (a) BCC and (b) FCC arrays.

y

x

z

FIGURE 4. Schematic illustration of flow through SC arrays of rotating spheres. A sphere
is positioned in the middle of the computational domain and periodic conditions are
implemented in three directions. The angular velocity of the sphere ω is in the positive z
direction. The flow velocity U driven by the added pressure gradient is in the positive x
direction when particle rotation is absent. Two two-dimensional planes XM and ZM through
the centre of the sphere, normal to the x and z axes, respectively, are also shown.

whereas the drag force and the torque barely change as Rer increases. This indicates
that in low-Reynolds-number flows, the nonlinearity caused by the intermediate Rer is
insignificant. Based on the present results shown in figure 5, the linear dependence of
the lift forces on Rer can be represented by the following expression:

FL(Rer)= FL|Rer=0.1Rer/0.1, (3.4)

where FL|Rer=0.1 is the Magnus lift force at Rer=0.1. The torque can be expressed as

T(Rer)= T|Rer=0.1, (3.5)

and the drag forces can be simply denoted by

FD(Rer)= FD|Rer=0, (3.6)
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FIGURE 5. The drag force, Magnus lift force and torque as a function of Rer in
low-Reynolds-number flows for SC arrays of spheres. Three straight lines are drawn for
reference. ‘Straight line 1’ is a horizontal line with the constant value of the drag force
when particle rotation is absent. ‘Straight line 2’ is governed by (3.4). ‘Straight line 3’
is a horizontal line with the constant value of the torque at Rer = 0.1. The solid volume
fractions for (a) and (b) are 0.05 and 0.5, respectively.

where FD|Rer=0 is the drag force when particle rotation is absent. Close observation
reveals that in high Rer ranges for all solid volume fractions, the Magnus lift forces
are slightly lower than the linear prediction made by (3.4) (denoted by ‘Straight line
2’ in figure 5). This indicates that the nonlinearity due to high Rer is beginning to
set in. For high solid volume fractions, FL and FD start to deviate from the linear
predictions of (3.4) and (3.6) at relatively larger Rer. T is the most insensitive quantity
to the increase of Rer. For c = 0.5, the deviations at Rer = 200 from (3.5) are only
around 2 %. Generally, in the range of Rer > 200, the dependence of FL, FD and T on
Rer tends to be more complicated, and is not pursued in the present paper. Overall,
the present results show that the lift force can be very significant in view of the
magnitude of the drag force when the sphere rotates at high rates. The figure shows
that, for the case of c = 0.05, FL is around 32 % larger than FD at Rer = 100. For
c= 0.5, FL is around 39 % and 76 % of FD at Rer = 100 and Rer = 200, respectively.
Considering that the maximum Rer measured by Wu et al. (2008) and Shaffer et al.
(2009) is around two to three hundred, the values of Rer simulated here are all within
the practical gas–solid flow systems.

To explore specifically why, at high Rer, the Magnus lift force deviates from the
linear relation shown in (3.4), both the contours of steady-state normalized streamwise
velocity u′ = u/|U| and the streamlines on the middle plane XM (see figure 4) are
shown in figure 6. Figures 6(a) and 6(b) are the results for Rer = 1 and Rer = 100,
respectively. It can be seen that for both Rer, u′ attains negative values at the top and
positive values at the bottom of the sphere. This is caused by the particle rotation
with ω directed in the positive z direction (see figure 4). For Rer = 1, the secondary
flow on the middle plane transports the fluid from the top to the bottom of the sphere.
This flow helps sustain the u′ distribution caused by particle rotation, which produces
the Magnus lift force. However, for Rer = 100, the secondary flow is dominated by
four circulating flows that reside at the corners of the computational cube. This flow
pattern hinders the transport of the fluid from the top to the bottom and thus to
some degree reduces the difference of u′ at the two sides. Eventually, a Magnus lift
force lower than expected from the linear relation will be produced. This flow pattern
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FIGURE 6. (a,b) Contours of the steady-state normalized streamwise velocity u′ = u/|U|
and streamlines on the two-dimensional plane XM denoted in figure 4. (c,d) Contours of
the steady-state normalized pressure p′= p/(ρ0/3) and streamlines on the two-dimensional
plane ZM denoted in figure 4. The results are generated from the simulations for a solid
volume fraction of 0.1 at the grid resolution of L/h= 72, where L and h are the size of
the computational cube and the lattice spacing, respectively. For (a,c), Rer = 1 while for
(b,d), Rer = 100.

also explains why the torque increases slightly at large Rer (see figure 5) since the
inefficient transport of the fluid from the top to the bottom certainly increases the
resistance of the rotational motion of the sphere.

Figure 6(c,d) shows the distribution of the normalized pressure p′ on the
two-dimensional plane ZM, where the position of plane ZM is denoted in figure 4. In
LBM, the pressure is computed as ρ/3 and hence the normalized pressure is defined
as p′ = p/(ρ0/3), where ρ0 is the initial density of the fluid in the simulation. It can
be seen that for Rer = 1, high and low pressure appears upstream and downstream
of the sphere separately, while for Rer = 100, the pressure distribution becomes
approximately symmetric around the sphere. The symmetric pressure distribution is
essentially caused by the fast rotation motion of the sphere, which promotes an instant
communication of the flow information between upstream and downstream (see the
streamlines in figure 6(d)). This pressure distribution tends to decrease the overall
force experienced by the sphere and thus the Magnus lift force would be lower than
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FIGURE 7. (a) The Magnus lift force FL multiplied by the porosity squared divided by
the rotational Reynolds number on the rotational spheres in SC arrays as a function of
the solid volume fraction. (b) The torque T on the rotational spheres in SC arrays as a
function of the solid volume fraction: the dashed line is the numerical solution of the
Stokes equations (Ladd 1988); the open triangles represent the results obtained using a
LBM by Ladd (1994). Also shown in (a,b) are solid lines representing the best fit to the
present results at Rer = 0.1 and the theoretical results calculated by Rubinow & Keller
(1961) at zero solid volume fraction.

the prediction from the linear relation. Moreover, it is noted that the decreasing trend
of FL with increasing Rer has been observed in experiments at intermediate Reynolds
numbers performed by Oesterle & Dinh (1998). However, definitive explanations
of this trend were not given because no information on the flow structure can be
obtained from their experiments.

Due to the linear dependence of the lift forces on Rer, the expression for FL for
various solid volume fractions can be developed solely based on the results obtained
at small Rer. Figure 7(a) depicts FL multiplied by (1− c)2 divided by Rer as a function
of c. The values are from the computations at Rer = 0.1, which is small enough
to provide accurate proportionalities for higher Rer. In order to best fit the present
simulation results and also have the correct limiting behaviour for c→ 0, a third-order
polynomial is proposed for FL as follows:

FL(1− c)2/Rer = (−0.287c3 + 0.228c2 − 0.0904c+ 1/24). (3.7)

The largest deviation of this fit from the present numerical results is less than 1 %.
For the torque, an expression is proposed as follows:

T = (−14.09c4 + 10.26c3 − 2.916c2 − 0.7480c+ 1)−1. (3.8)

This fit naturally produces the correct results at the limit of vanishing c, which is
T = 1 predicted by Rubinow & Keller (1961) as well as Kirchhoff (1876). The largest
deviation of this fit from the present numerical results is less than 1 %. The results
for the torque over a wide range of solid volume fractions are also confirmed by the
numerical solution of the Stokes equations (Ladd 1988) and the simulation results by
Ladd (1994), which are shown in figure 7(b).

The effect of the angle between the rotation axis of the sphere and the flow
direction is also explored in this work. Figure 8 depicts ratios of the Magnus lift
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FIGURE 8. (a) The ratios of the Magnus lift force at several selected angles θ = 0, π/6,
π/4 and π/3 to the Magnus lift force at θ =π/2; (b) the same as (a), but for the torque.

force and the torque at several selected angles of θ = 0, π/6, π/4 and π/3, to their
values at θ =π/2, respectively. Generally, the torque and the drag force (not shown)
stay basically unchanged as θ varies. The lift force is found to be approximately
proportional to Rer sin(θ), which is the rotational Reynolds number defined by the
component of the angular velocity perpendicular to the flow direction. Thus, for
arbitrary rotation axis directions and solid volume fractions, the dependence of the
Magnus force on the rotational Reynolds number can be well described by

FL(Rer; θ; c)= Rer sin(θ)(−0.287c3 + 0.228c2 − 0.0904c+ 1/24)/(1− c)2 (c 6π/6).
(3.9)

The drag force relation, (3.1), and the torque relation, (3.8), still apply regardless of
the values of Rer and θ due to their insensitivity to these rotation-related parameters. It
should be mentioned that at high rotational Reynolds numbers, the nonlinearity of the
flow starts to set in and produces deviations from (3.8) and (3.9), as one can observe
from figures 5 and 8. In the range of smaller rotational Reynolds number, Rer < 10,
(3.1), (3.8) and (3.9) can be used for all the solid volume fractions with less than
1 % error. For larger Rer, the errors of these relations generally decrease as the solid
volume fraction increases. For low solid volume fractions, c < 0.1, (3.1), (3.8) and
(3.9) can be used in the range of Rer < 50 with errors less than approximately 5 %,
2 % and 15 %, respectively. While for high solid volume fractions, c>0.3, with almost
the same error thresholds, these relations can be used up to approximately Rer = 100.

The results for the Magnus lift force and the torque for BCC and FCC arrays are
depicted in figure 9. The proposed expressions for the Magnus lift force for BCC and
FCC arrays are

FL(1− c)2/Rer = (−0.0478c3 + 0.0853c2 − 0.0890c+ 1/24) (c 6
√

3π/8) (3.10)

and

FL(1− c)2/Rer = (−0.0546c3 + 0.0992c2 − 0.0930c+ 1/24) (c 6
√

2π/6), (3.11)

respectively. The expressions for the torque for BCC and FCC arrays are

T = (−2.890c4 + 2.924c3 − 1.154c2 − 0.8444c+ 1)−1 (c 6
√

3π/8) (3.12)
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FIGURE 9. (a) The Magnus lift force FL multiplied by the porosity squared over the
rotational Reynolds number on the rotational spheres in BCC and FCC arrays as a function
of the solid volume fraction. (b) The torque T on the rotational spheres in BCC and FCC
arrays as a function of the solid volume fraction. Also shown in (a,b) are the theoretical
results calculated by Rubinow & Keller (1961) at zero solid volume fraction.

and

T = (−2.280c4 + 2.568c3 − 1.093c2 − 0.8406c+ 1)−1 (c 6
√

2π/6), (3.13)

respectively. Similar to SC arrays, more general Magnus lift relations for BCC and
FCC arrays accounting for arbitrary rotation axis directions can be obtained.

3.2. Simulations for random arrays of spheres
3.2.1. The drag force

Following the procedure outlined in § 2, simulations without particle rotation are
performed to calculate the drag force FD for random arrays of spheres. Figure 10
compares the present results with previous numerical results (Ladd 1990; Hill et al.
2001a,b; Van der Hoef et al. 2005), theoretical predictions (Carman 1937; Kim &
Russel 1985; Koch & Sangani 1999) and an empirical fit based on experimental
results (Wen & Yu 1966). The figure shows that the present results agree well with
previous numerical values and the Carman relation. The standard errors in FD of the
present results are typically less than 5 % of the mean (not shown). Based on the
present simulation results, the best fit for the drag force in random arrays is proposed
as follows:

FD =
{

9.9c/(1− c)2 + (1− c)3(1+ 3c0.6) (c< 0.55),
5.87 sin

(
(c/0.637)1.75π/2

)
/(1− c)2 (0.55 6 c 6 0.637),

(3.14)

where 0.637 is the packing limit of a randomly packed bed of mono-disperse spheres
in experiments (Scott & Kilgour 1969). In the range of c < 0.55, the present
expression takes a similar form to Van der Hoef et al.’s equation. The maximum
difference between this expression and the present results is less than 3 %.

3.2.2. The Magnus lift force and the torque due to particle rotation
For random-array systems, the evaluation of the Magnus lift force can be very

complex since, in practical situations, particles may rotate at different speed rates
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FIGURE 10. The Stokes-flow drag force FD (multiplied by the porosity squared) on the
non-rotational spheres in random arrays as a function of the solid volume fraction. The
simulation results of Ladd (1990), Hill et al. (2001a,b) and Van der Hoef et al. (2005) are
represented by symbols. The results from the theories of Carman (1937), Kim & Russel
(1985), Koch & Sangani (1999) and Van der Hoef et al. (2005) and the empirical fit of
Wen & Yu (1966) are also shown.

with different rotation axis directions. In this section, a first step is made towards
describing the Magnus lift force for practical systems, where all spheres are forced to
rotate with the same angular velocity ω. Thus, the reported mean Magnus lift force
can also be interpreted as an average force experienced by one sphere in various
local microstructures due to particle rotation. In the simulations, the rotation axis of
the sphere is set to be perpendicular to the direction of the added pressure gradient.
However, it may not be perpendicular to the computed superficial flow velocity U
due to the existence of the configuration force. Since the configuration force is minor
relative to the drag force, the angle θ between ω and the steady-state U is close to but
not necessarily equal to π/2. In this work, it is found that in low-Reynolds-number
flows, the relation FLθ =FL sin(θ) (see (2.10)) holds for a wide range of Rer not only
for ordered arrays but also for random arrays of spheres. Thus, the Magnus lift force
at θ =π/2 can be recovered by FL = FLθ/sin(θ).

The simulation results of FL are given in table 1. The standard deviations in FL
are also shown in this table, which can be up to approximately 10 % of the mean,
especially in the low solid volume fraction range. Also shown in table 1 are the
results of the torque T and its standard deviation 1T . Typically, 1T is only around
1 % of T , indicating that T is not as sensitive to different random configurations. The
Magnus lift force calculated without the procedure of eliminating the configuration
force, F′L, and its relative standard deviation 1F′L/|F′L|, are also presented in table 1.
It can be seen that F′L fluctuates in a wide range and 1F′L/|F′L| attains relatively
large values, which indicates that F′L is not well converged with the limited samples
simulated in this work. As pointed out by Tenneti & Subramaniam (2014), even
without eliminating the configuration force, ensemble averaging over an adequate
number of configurations will yield accurate results. This idea certainly applies to FL
as well as FD and T . However, based on the results of F′L shown in table 1, it can be
concluded that to obtain accurate results for FL with direct ensemble averaging, many
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c FL 1FL/FL F′L 1F′L/|F′L| T 1T/T

0.1000 0.00350 0.06 −0.00727 5.1 1.22 0.007
0.1500 0.00362 0.10 −0.01250 5.0 1.34 0.010
0.2000 0.00373 0.12 −0.05550 1.3 1.48 0.008
0.2500 0.00385 0.07 0.02940 3.6 1.64 0.020
0.3000 0.00383 0.11 −0.06520 0.76 1.82 0.030
0.3500 0.00419 0.04 −0.14800 1.5 2.00 0.009
0.4000 0.00430 0.07 −0.06090 4.5 2.20 0.006
0.4500 0.00423 0.06 −0.00139 150 2.42 0.010
0.5000 0.00465 0.05 −0.35900 1.2 2.78 0.010
0.5500 0.00487 0.06 −0.63800 1.0 3.38 0.030
0.6000 0.00516 0.07 −0.13800 5.2 4.37 0.050
0.6150 0.00495 0.05 0.05640 7.9 5.22 0.007
0.6300 0.00512 0.12 −0.60900 1.6 6.78 0.006
0.6340 0.00495 0.02 1.02000 1.1 7.06 0.010
0.6345 0.00480 0.03 2.21000 0.59 7.11 0.001

TABLE 1. The Magnus lift force FL and torque T in random arrays of rotational spheres
with Rer = 0.1 at various solid volume fractions c. F′L is the Magnus lift force calculated
without eliminating the configuration force. 1FL, 1F′L and 1T are the standard deviations
in FL, F′L and T , respectively.

more simulations over different configurations should be performed, which would
consume vast computer resources and is not practical.

Similar to ordered arrays, the Magnus lift force increases linearly with increasing
Rer while the drag force and the torque barely change as Rer varies. Figure 11(a)
depicts the combination FL(1− c)2/Rer as a function of the solid volume fraction c.
The values of FL come from the simulations at Rer = 0.1. Also shown in this figure
are the error bars that represent the standard deviations in FL. The magnitudes of the
error bars are calculated from the results shown in table 1. This figure shows that the
dependence of FL(1− c)2/Rer on c is approximately linear. The best fit to describe
this dependence is proposed as follows:

FL(1− c)2/Rer =−0.0398c+ 0.0317 (c 6 0.637). (3.15)

The maximum difference in the entire range of packing fractions between this relation
and the simulation results is only around 5 %, providing good support for the observed
linear dependence. It is noted that the Magnus lift force in random arrays is smaller
than that in ordered arrays at all solid volume fractions. This is because the random
positioning allows some spheres to stay closer to each other and makes spheres
hidden behind others experience a smaller flow velocity and consequently, produce
less Magnus lift force.

As FLθ =FL sin(θ) yields the Magnus lift force for the case where the angle between
the angular velocity ω and the steady-state U is θ , a more general Magnus lift relation
for arbitrary rotation axis directions and solid volume fractions in random arrays of
spheres can be given as

FL(Rer; θ; c)= Rer sin(θ)(−0.0398c+ 0.0317)/(1− c)2 (c 6 0.637). (3.16)

The torque on rotational spheres in random arrays as a function of the solid volume
fraction is depicted in figure 11(b). These results also come from the simulations at
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FIGURE 11. (a) The Magnus lift force FL (multiplied by the porosity squared divided by
the rotational Reynolds number) on the rotational spheres in random arrays as a function
of the solid volume fraction. (b) The torque T on the rotational spheres in random arrays
as a function of the solid volume fraction. The error bars in (a) and (b) represent the
standard deviations in FL and T , respectively. The results of FL and T come from the
simulations at Rer = 0.1.

Rer= 0.1. It has been illustrated above that T remains nearly constant with increasing
Rer up to O(102) and only a slight deviation is observed at large Rer. Therefore, the
results at a small Rer, such as Rer = 0.1, are sufficient to represent the value of T for
up to O(102) for each solid volume fraction. To best fit the results for all the packing
fractions, the following expression is proposed:

T = (−13.19c4 + 14.41c3 − 4.291c2 − 0.9747c+ 0.9465)−1 (c 6 0.637). (3.17)

The largest deviation of this fit from the present numerical results is less than 1 % for
c6 0.5 and around 5 % for c> 0.5. The larger deviation at high c is apparently related
to the sharp increase of T in that range (see figure 11(b)), which essentially is caused
by the dramatically shrinking space among spheres as c approaches the packing limit.
Similar to ordered arrays, the drag relation, (3.14), and the torque relation, (3.17), hold
in a wide range of Rer regardless of the value of θ .

3.2.3. Simulations for random arrays of spheres with random angular velocities
In real gas–solid systems, freely moving particles may rotate at different rates with

different rotation axis directions. To move a step closer to real-world systems, even
in the systems with fixed particles, it is helpful to examine how random angular
velocities will affect the results for the systems. In this section, it is assumed that
the angular velocities of real systems follow a Gaussian distribution. The assignment
of random angular velocities to particles is done as follows. First, all the particles
are given the same prescribed mean angular velocity ω as done in § 3.2.2. Then,
the angular velocity disturbances, which essentially are Gaussian random values
with zero mean and a specific standard deviation σ , are added to the components
in three directions of the angular velocity of all particles. Applying the central
limit theorem (Rice 1995), the angular velocity disturbances can be generated by
repeatedly running Fortran’s random number generator routines. To produce more
physically sound results, the standard deviation σ of the disturbances is allowed
to increase as the magnitude of the mean ω increases. Thus, for different ω, σ is
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FIGURE 12. (a) The Magnus lift force FL/Rer on the rotational spheres in random arrays
(upper lines) and its relative standard deviation 1FL/FL (lower lines) as a function of
the coefficient of variation cv . (b) The same as (a), but for the torque T and its relative
standard deviation 1T/T . The simulations are performed at a solid volume fraction of 0.3.

calculated by σ = cv|ω|, where cv is termed the coefficient of variation. It also needs
to be kept in mind that |ω| is always determined by (1.5) once Rer is prescribed.

Figure 12 depicts the results for FL/Rer and T and their relative standard deviations
1FL/FL and 1T/T as a function of cv. For each discrete cv, four cases with Rer=0.1,
1, 10 and 30 are simulated. It can be seen that as cv increases, the values of FL/Rer
and T begin to fluctuate around those obtained in the cases of vanishing cv, where
angular velocity disturbances for particles are absent. This fluctuation of the mean
values become more evident when cv is larger than 0.1. Due to the relatively stronger
nonlinearity associated with larger Rer, the magnitude of the fluctuation increases with
the increase of Rer. For instance, at cv=0.1, the maximum deviations of FL/Rer and T
relative to the results at cv = 0 occur at Rer = 30, which are around 25 % and 1.6 %,
respectively. Figure 12 also shows that the relative standard deviations 1FL/FL and
1T/T increase as cv increases. It is also noted that the influence of the randomness
in the angular velocities on FD is not strong and similar to that on T . The fluctuation
of the mean values and the increase of the relative standard deviations of the results
appear to be due to the limited samples (generally six samples) used to generate these
results. These phenomena are intrinsically caused by two reasons. One is that the
randomness in angular velocities makes the flow possess more microstructures and
hence such a system cannot be fully represented with a relatively small number of
particles. The other reason is associated with the nonlinearity of the flow brought
in by relatively fast-rotating particles, which disturb the local flow strongly and the
effects on particles still persist after the average is performed. Moreover, the number
of fast-rotating particles increases with increasing cv. This adds further complexity to
the problem and makes the relative standard deviations even larger.

Simulations in this section are only performed for a solid volume fraction of 0.3.
Nevertheless, the results do demonstrate that systems primarily considered in this
paper in which particles are all rotating in unison are good approximations of real
systems with weak randomness of angular velocities (cv < 0.1).

3.3. The ratio of the Magnus lift force to the drag force
To clearly identify the importance of the Magnus lift force FL relative to the drag force
FD in both SC arrays and random arrays of spheres, the ratio of FL to FD is calculated
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FIGURE 13. The ratio of the Magnus lift force FL to the drag force FD on the rotational
spheres as a function of the solid volume fraction: (a) the results for SC arrays of spheres;
(b) the results for random arrays of spheres.

in the entire range of solid volume fractions c based on the simulation results as well
as the relations proposed in previous subsections. For simplicity, only the values of
FL at θ = π/2 are used. The results for SC arrays and random arrays of spheres are
shown in figures 13(a) and 13(b), respectively. The line in figure 13(a) is calculated by
dividing the lift relation, (3.9), by the drag relation, (3.1), while the line in figure 13(b)
is calculated by dividing the lift relation, (3.16), by the drag relation, (3.14). For both
arrays of spheres, it can be seen that the ratio of FL to FD first decreases rapidly in
the range of c< 0.1 then slows down as c further increases. Most of the simulation
results agree well with the line calculated from the proposed relations except those
at Rer > 50 for low solid volume fractions, which is due, as mentioned above, to the
appearance of the nonlinearity of the flow.

Figure 13 shows that the lift force can be very significant and even greater than the
drag force when Rer is up to O(102), which is still in the practical range as mentioned
in the Introduction. Close observation reveals that for both arrays of spheres, when
Rer reaches 100, the lift-to-drag ratio will be more than unity in the range of c of
less than approximately 0.17. In the range of high solid volume fractions, c > 0.3,
the lift force can be safely ignored only when Rer is less than 10, where the lift-to-
drag ratio is generally less than 0.07. However, the lift force can still be significant
when spheres are rotating at high rates. For instance, when Rer = 100, the lift-drag-
ratio for c = 0.3 and 0.5 is around 67 % and 39 %, respectively, for SC arrays of
spheres, and around 58 % and 23 %, respectively, for random arrays of spheres. The
Magnus lift force, appearing in a direction perpendicular to the drag force with a
non-negligible magnitude, may appreciably change and complicate the particle fluid
dynamics in practical flow systems. Thus, the inclusion of the Magnus lift force is
of practical importance in flow simulations. Fortunately, it has been shown that the
Magnus lift force can be readily included in the CFD–DPM (Zhu et al. 2007). The
inclusion of the Magnus lift force in multi-fluid models is somewhat non-trivial due
to the fact that rotating speeds of spheres are not tracked in these models. Still, some
potential approaches to solving this problem have been proposed in the literature (see
Lun 1991; Jenkins & Zhang 2002; Sun & Battaglia 2006).



www.manaraa.com

420 Q. Zhou and L.-S. Fan

4. Summary
In the present study, steady low-Reynolds-number flows in both ordered arrays and

random arrays of non-rotational and rotational spheres are examined over the entire
range of packing fractions. The drag forces of the non-rotational spheres in both arrays
show good agreement with corresponding existing theories and numerical results. For
SC, BCC and FCC arrays of spheres, relations for the drag force equations (3.1)–
(3.3), are proposed based on the analytical solutions by Hasimoto (1959) and Sangani
& Acrivos (1982) at low solid volume fractions and the present simulation results at
intermediate and high solid volume fractions. These are the first drag force relations
that cover the entire solid volume fractions for the three ordered arrays. For random
arrays of spheres, based on the present simulation results, a revised relation for the
drag force (3.14) is proposed with minor corrections to the one formulated by Van
der Hoef et al. (2005).

To compute the Magnus lift force due to particle rotation, a procedure is formulated
to eliminate the influence of the configuration force produced by the anisotropic
random arrays of spheres. This procedure applies only for low-Reynolds-number flows
where the linearity of the Stokes equations prevails. It is found that the Magnus lift
force produced by the rotation movement is approximately in direct proportion to the
rotational Reynolds number in the range from practically zero up to O(102), while
the drag force and the torque are barely affected by the rotational Reynolds number.
Through the evaluation of the ratio between the Magnus lift force and the drag force,
it is demonstrated that other than the drag force, the Magnus lift force can be another
important factor affecting the overall particle–fluid dynamics. Based on the present
simulation results, the Magnus lift force relations, (3.9), (3.10), (3.11) and (3.16),
as well as the torque relations, (3.8), (3.12), (3.13) and (3.17), are proposed for the
ordered SC, BCC, FCC arrays and random arrays of spheres, respectively. These are
the first relations proposed that cover all possible packing fractions. In addition, the
effect of the angle between the rotation axis of the sphere and the flow direction is
also explored. It is found that the lift force is proportional to the rotational Reynolds
number defined by the component of the angular velocity perpendicular to the flow
direction. The drag force and the torque are basically unaffected by varying the angle
of the rotation axis.

To move a step closer to real-world freely evolving suspensions of mono-disperse
spherical particles, the influence of random angular velocities on the results is
examined. For random angular velocities with small relative standard deviations
(coefficient of variation less than 0.1), the results obtained in systems in which
particles are all rotating in unison still persist. For random angular velocities with
larger relative standard deviations, the drag force, the Magnus lift force and the torque
start to fluctuate and their standard deviations generally increase with the increase of
the strength of the randomness in angular velocities. The major reasons for this are
discussed in § 3.2.3.

Finally, it should be pointed out that the Magnus lift force has usually been ignored
in previous studies of fluid–solid systems. That could be mainly due to unawareness
of the fast rotation speeds of particles occurring in practical systems and the lack
of Magnus lift force relations for practical random arrays of particles. Recognizing
the fast rotation speeds of particles inherently present in the process systems, as
experimentally confirmed in the literature and with the relations obtained in this
study, the impact of the Magnus lift force on the particle–fluid dynamics in flows can
be assessed with ease since the obtained relations can be readily implemented in the
CFD–DPM, which is a popular Eulerian–Lagrangian method used for particle–fluid
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simulations. It should be noted that the present Magnus lift relations can only be used
in low-Reynolds-number flows. Calculations of the Magnus lift force in intermediate-
and high-Reynolds-number flows are in progress.
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